MIL-HDBK-1003/19
where the subscript i has been dropped because only a single system is
present. As a general rule, the corrections for azimuth do not become
significant until the departure from due south approaches +/-30 degrees.
If two systems having either different numbers of glazings or different
orientations are employed it will be necessary to determine the weather
parameters for the second system using the blanks provided. Then the
weather parameters for the two systems are area weighted using the formula
provided on the worksheet.
5.3.7 Auxiliary heat requirements. The auxiliary heat requirements of
the building are calculated using Worksheet 6 which is reproduced for the
example calculation. The scaled solar load ratio (SLR*) is computed from
parameters previously recorded on other worksheets and found to be 0.64.
Using this value and the city parameter (a) from Worksheet 5, the annual
heat to load ratio is read from the nomograph in figure 23 as 0.37.
Finally, using the formula at the bottom of the worksheet, calculate an
annual auxiliary heat requirement of 32.6 MMBtu for the four-plex unit.
Dividing this figure by the floor space of 6800 ft2 and the annual heating
degree days of 2778 yields an auxiliary heating factor of 1.73 Btu/ft2-DD.
5.3.8 Distribution of the solar aperture. In general, the total solar
aperture of a multi-family unit should be distributed in a manner that
provides greater solar gains to the sections of the unit that experience the
greater loads. We can accomplish this by performing the calculations
presented herein once for each unique thermal zone within a unit. The
worksheets are set up to allow this procedure by entering appropriate values
for the heated floorspace and using the specialized definition of total
perimeter (Pt) that excludes partitions between distinct thermal zones.
However, in many cases the much simpler procedure described below is
adequate.
On Worksheet 2 we determined that the four-plex unit has a total NLC of
28,248 Btu/DD. Each of the four sections, therefore has, on the average, a
NLC of 7,062 Btu/DD, or one fourth of the total value. The average NLC
value must be adjusted to account for the different loss characteristics of
the two unique thermal zones that exist in the four-plex units. The two
outer sections will have a larger loss coefficient than the two interior
sections which have two shared or common side walls. It is assumed that a
negligible amount of heat is transferred through these common walls because
only small temperature differences are likely to exist from one side to the
other. The exterior side walls on the end sections, however, lose heat to
ambient conditions that may be quite cold.
We can easily calculate the loss characteristics of the end walls using
the equations on Worksheet 2. The end wall area i:s
Aw = 18 x 23 = 414 ft2
.
Note that we have assumed that there are no windows on the end walls.
The
load coefficient of the wall is therefore:
LCw = 24 Aw/RWALL = 24 x 414/21 = 473 Btu/DD
80